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How to use fuzzy set theory to select a library manager
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The purpose of this paper is to demonstrate how to select a library manager using fuzzy set theory. For this purpose, we
first designate the set of professional criteria, which a library manager must meet, as (a1,a2,a3,...,an). Secondly, we assign
the weights, (uj), representing the relative importance of each criterion, which are fuzzy numbers in the unit interval
[0,1], to these professional criteria. Thirdly, we determine the extent to which the library manager candidates satisfy
these criteria as (bj), which are also fuzzy numbers in the unit interval [0,1]. Fourthly, we combine the candidates’
degrees of professional ability using an aggregator known as the OWA operator. As a result of this combination, the most
desirable candidate is the one with the highest score, which is a fuzzy number in the unit interval [0,1]. 
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Introduction 
Library managers make and implement important decisions regarding the future of their libraries. Although candidates for
such positions therefore need to possess personal qualities such as fairness, flexibility, diplomacy, patience, and
commitment, etc., the professional skills and qualifications of a candidate may be the important selection criteria. Table 1
shows a typical set of such professional criteria.

The criteria are not exhaustive but used to exemplify. Clearly these professional criteria differ in degree of importance. In
order to choose the most desirable library manager candidate according to these criteria, we need to quantify the ‘the
importance of the criteria’ and ‘the extent to which the library manager candidates satisfy them’. The best tool for this is
fuzzy set theory, for it has the power to represent them both as linguistic values (or fuzzy labels) used in spoken language
and as fuzzy numbers in the unit interval [0,1]. 

Library and information science has been developing with the aid of the mathematical tools such as ‘fuzzy set theory’
used in applied sciences. The purpose of this paper is to demonstrate how to select a library manager using the fuzzy set
theory as a mathematical tool. First we need to briefly look at the classic set theory to appreciate the need for fuzzy set
theory. We will then explain the application of fuzzy set theory to decision making, emphasizing the roles of the OWA
operator, linguistic quantifier and linguistic values. Finally, we will use an example to illustrate how to select a library
manager using this theory. 

1. Murat Yilmaz (PhD) is a lecturer in the Department of Information and Documentation Management, Faculty of Letters, Istanbul 
University, Turkey

Table 1 Necessary professional criteria for a library manager

A1 Knows how to prepare and control the library budget, e.g. ‘payments for subscription to electronic databases’ and ‘book budget’, etc. 

A2 Understands legislation pertaining to librarianship (copyright law, legal deposit law, etc.)

A3 Understands technical services such as acquisition, cataloguing, classifying of printed and electronic sources.

A4 Understands user services such as referencing and lending services for library users.

A5 Understands interlibrary cooperation procedures (interlibrary lending and borrowing, acquisition, technical processing, cataloguing and 
creation of electronic resources, etc. )

A6 Possesses public relations skills, e.g. relations with nongovernmental organizations, municipalities and local press agencies. 

A7 Understands correspondence and filing procedures.

A8 Can select and manage library staff.

A9 Is familiar with methods of digitizing information, e.g. ‘digitization of manuscripts’.

A10 Is familiar with methods for preserving printed sources, e.g. methods of binding and protection against extreme heat and humidity in 
library building. 
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Classic Set Theory 
Set theory invented by George Canton in the latter part of 19th century deals with sets and their characteristics. The
term set can be defined as a collection or class of objects. If A is a set and the object x is a member (or an element) of the
set A, then we use the notation x∈A. If an object y is not a member (or an element) of the set A, then we use the
notation y∉A. In the classic set theory, an object either belongs to a given set or does not (Schaefen and Schaefen 1979:
278). Membership in classic set theory is as clear as ’black’ and ‘white’, because a classic set has well-defined set
boundaries (Hood and Wilson 2002: 395; Munakata and Jani 1994: 72; Treadwell 1995: 92). However, such sets have
limited applications: For example, let us examine the set of animals (A). Elements such as dog, cat, horse and bird, etc. are
clearly members of this set (1, x∈A) and elements such as rock, fluid and plant etc. are clearly not members (0, x∉A).
But classic set theory cannot be applied to situations where membership is unclear, e.g. as to whether elements such as
starfish and bacteria are members of the set of animals (Zadeh 1965: 338). Nor can it be applied to sets described by
linguistic statements such as thick books and short tables. In the middle of the 1960s, Lotfi Zadeh developed fuzzy set
theory to resolve the problem of membership. In fuzzy sets the membership of an object x of a set A is not only 1 (x∈A)
or 0 (x∉A) but rather a degree of membership being a number between 0 and 1 [0 < µ A (χ) < 1] (Arfi 2005: 25; Roth
and Mervis 1983: 509).

Fuzzy Set Theory
In a fuzzy set, the membership degrees of the elements are assigned by a membership function having a value between 0
and 1, and such a set is characterized by this function (Dualibe 2003: 16). We can also define fuzzy linguistic terms such as
young, thick and short by the membership function (µ(x)) (Lee and Yeung and Tsang 2002: 767). But we subjectively state
this definition as a decision maker. In this context, the membership function of a fuzzy set is a useful tool in modelling a
decision maker’s preference profiles (Dae-Young 2003: 31). As an example, let us examine the vague definition young (Y)
subjectively.
Υ = {χ,µγ(χ)} = {(22,0.2),(24,0.4),(26,0.6),(28,0.8),(30,1),(32,0.8),(34,0.6),(36,0.4),(38,0.2)}

As a library manager candidate, a 28-year-old person here is symbolized as (28,0.8), meaning that this person is an
80% member of this set. Only a 30-year-old person is a 100% member of this set. In library and information science,
which is closer to social sciences, this theory is a useful tool for decision-making problems2 [See Ref. (Turner and O’Brien
1984: 228-234)]

Fuzzy set theory and decision-making
Decision-making consists of selecting the best alternative from a given alternative set (Xu 2004: 20). In decision-making
problems, if the decision criteria differ in degree of importance, the decision maker will have more difficulty in selecting
the best alternative. In order to overcome this difficulty, Bellman and Zadeh suggested that each of the criteria would be
represented as a fuzzy subset over the set of alternatives. (Riberio and Pereira 2003: 330; Yager 1999: 188). In this
context, all the fuzzy subsets may be regarded as the different pieces of information that consist of ‘weights representing
degree of importance of the professional criteria’ and ‘the weights associated with the extent to which the alternatives/
candidates meet each criterion’. To select the best candidate, all this information is combined by means of an aggregator
known as the OWA (Ordered Weighted Averaging) operator.

The OWA operator, which combines different pieces of information by means of their weights, was introduced by Yager
in 1988 (Xu 2005: 843; Xu, 2004: 20; Majlender 2005: 340; Ben-Arieh 2005: 293; Wang and Parkan 2005: 21; Smolikova
and Wachowiak 2002: 24). Its two essential features are ‘reordering the arguments (or relevant criteria)’ and ‘the set of
weights’. ‘Reordering’ involves ordering the arguments/criteria in descending order, based upon their values (Pelaez and
Dona 2003a: 470; Filev and Yager 2003: 672). In the OWA operator, ‘the set of weights’ must meet the following two
conditions: (Yager 2006: 579; Yager 2004a: 178; Yager 2004b: 1952; Yager 2002: 690)

Condition 1:     wj ∈ [0,1]                                Condition 2:        

2. Fuzzy set theory is also a suitable tool for ‘information retrieval’, which deals with retrieving those documents which meet the needs 
of library users. In information retrieval systems, if all documents are a universal set, then those documents related to an index term 
are a subset of it. Fuzzy information retrieval systems work as follows. An indexer assigns a weight of value between 0 and 1, 
expressing the degree to which the index terms are associated with documents. That is indexer will assign a value of 1 to a docu-
ment directly related to the index term, and 0.1 to one minimally related (Hood and Wilson 2002: 397; Bookstein 1985: 121). Data-
base users combine the index terms with Boolean operators (and, or, not) to retrieve the relevant documents.

wj
j 1=

n

∑ 1=
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If these two conditions are met, we can define OWA operator as

                                                                                                             [Formula 1]

(bj in the formula is the jth largest element of the collection of aggregated criteria a1,a2,a3,…,an.)

The OWA operator plays an important role in modelling the linguistic (or fuzzy) quantifiers (Kacprzyk and Zadrozyn 2002:
1281). That is to say, it provides for linguistic statements such as ‘most criteria must be met’ to be expressed in a
mathematical formula (Yager 1999:188). In classical (or binary) logic, there are two quantifiers: ‘at least one (∃)’ and ‘all
(∀)’ used to determine a quantifier to solve a decision-making problem. So, classical logic allows a decision maker to
stipulate either ‘at least one criterion must be met’ or ‘all criteria must be met’. However, for expressing such quantifiers as
most, many, few or half in spoken language, Zadeh suggested using the linguistic (or fuzzy) quantifier Q represented by a
fuzzy subset Q(r) over [0,1], where Q(r) indicates the degree to which the portion of objects r satisfies the concept
indicated by the quantifier Q (Yager, 1993). If Q(r) is 1, the concept is fully satisfied, and if a Q(r) is 0, the concept is not
satisfied at all. Thus using linguistic quantifiers we can model the proportion of the criteria, which the library manager
candidates satisfy3. The question which then arises is ‘How can we determine the extent to which a library manager
candidate satisfies a professional criterion?’ This we answer by means of linguistic values (or fuzzy labels).

In certain situations, we use linguistic values instead of numbers in order to evaluate information (Pelaez and Dona
2003b: 810). For example, let us evaluate a ‘reading room’. We use some linguistic values such as ‘good’, ‘very good’ or
‘bad’ for the comfort of the reading room. Decision makers can use linguistic values such as ‘important’ or ‘unimportant’
as fuzzy numbers over the unit interval [0,1] (Garcia-Lapressa and Louis 2006: 356-358; Sheng-Lin and Reay-Chen and
Shih-Yuan 2006: 350-351) to assign weights to the professional criteria and ‘good’, ‘very good’, ‘very bad’ also over [0,1],
to assign the candidates a score for each criterion. But the weights must be explicitly defined and known by the assessing
actors beforehand. Posterior assignment of scores arbitrarily is not allowed for statistical reasons.

An illustrative example of the selection of a library manager
Suppose that we have three library manager candidates (X,Y,Z) and the ten professional criteria as per Table 1. The first
stage of the process involves assigning weights to those criteria, which are not of equal importance. By means of the
linguistic values (or fuzzy labels), we can represent the weights of the criteria as real numbers in the unit interval [0,1].
Table 2 shows possible linguistic values of the weights and Table 3 the consequent numerical value of the weight allocated
to each criterion (uj).

3.In practice a library manager candidate may not completely meet all of the professional criteria. In this situation, a decision maker
can select a candidate meeting most of the criteria. Most is represented by the linguistic quantifier Q(r)= r2.

Table 2 Linguistic values representing the degree
of importance of each professional criterion

Table 3 Weights representing the degree of
importance of all professional criteria

Linguistic values
Numerical

weights Criteria 
Numerical 

weights

Extremely important 1,0 A1 1,0

Very very important 0,9 A2 0,9

Very important 0,8 A3 0,6

Important 0,7 A4 0,6

More or less important 0,6 A5 0,8

Fair 0,5 A6 0,7

More or less unimportant 0,4 A7 0,4

Unimportant 0,3 A8 0,8

Very very unimportant 0,2 A9 0,7

Very unimportant 0,1 A10 0,7

Extremely unimportant 0,0

OWAw a1 a2, a3, an,( ) wj bj⋅
j 1=

n

∑=
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We see why the weights in Table 3 are different by considering for example the criteria A1 and A7. A1(Knows how to
prepare and control the library budget) is extremely important for a library manager and A7 (Understands
correspondence and filing procedures) is not usually important. The weights assigned to the criteria may also change
according to the type of library. The second stage of the process involves assigning the candidate a score for each
criterion. Table  4 shows the consequent numerical values of the scores assigned to each candidate for each criterion. 4

The last stage of our process involves combining the weight for each of the criteria with the corresponding obtained
scores, per person, by means of the OWA operator, the process being as follows (Yager and Kelman 1999: 407; Yager
1996: 125-127): 
Step 1: Order the scores in descending order and enter them in the bj column. (See Table 5)
Step 2: Order the weights of the criteria and enter them in the uj column. (See Table 5)
Step 3: Calculate the values of OWA weights (wj) using the following formula:

                                                                                                                       [Formula 2]

(Sj-1: The score of the person’s criterion according to step 2)

                                                                                                                                       [Formula 3]

                                                                                                                                         [Formula 4]

(T = uj: the sum of scores: 7,2)

Step 4: Calculate the decision function D(x) for each candidate using the following formula:

                                                                                                                                                      [Formula 5]

Table 4 Scores assigned to each candidate for each criterion

The candidate X: The candidate Y: The candidate Z:

A1(x)= 0,8 A1(y)= 0,7 A1(z)= 1,0

A2(x)= 0,9 A2(y)= 0,6 A2(z)= 0,9

A3(x)= 1,0 A3(y)= 0,4 A3(z)= 0,8

A4(x)= 0,4 A4(y)= 0,8 A4(z)= 0,7

A5(x)= 0,5 A5(y)= 0,9 A5(z)= 0,8

A6(x)= 0,5 A6(y)= 0,8 A6(z)= 0,8

A7(x)= 0,9 A7(y)= 0,5 A7(z)= 0,5

A8(x)= 0,7 A8(y)= 0,8 A8(z)= 0,8

A9(x)= 0,7 A9(y)= 0,7 A9(z)= 0,7

A10(x)= 0,7 A10(y)= 0,9 A10(z)= 0,7

4.The scores can be assigned to each candidate for each criterion with the aid of traditional selection methods such as oral and writ-
ten examinations. So, with the help of fuzzy set theory, the traditional selection methods may have a strong influence over the process
of decision-making.

wj χ( ) Q sj( )2 Q sj 1–( )2–=

sj
1
T
-- uk
k 1=

j

∑=

T uk
k 1=

n

∑=

D χ( ) wi χ( ) bi⋅
i 1=

n
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We can see the score for each library manager candidate calculated by means of the OWA operator in Table 5. 

(The symbols in Table 5: A1,…,A10: the professional criteria; bj: the scores assigned the candidates for each criterion; uj:
‘the weights of the criteria’ and is constant over all candidates; sj: ‘the value of the linguistic quantifier; normalized over all
quantifier values’ and score for criterion j; sj

2: the representation of most; wj : the values of OWA weight; dj= bj.wj )

Conclusion
In this research we studied how to objectively select the most desirable candidate from the three library manager
candidates (X,Y,Z) using fuzzy set theory. We then used the OWA operator to combine all the pieces of information
associated with the candidates and the criteria. With the aid of this operator, we respectively calculated the scores for
each library manager candidate as (X=0,610), (Y=0,645) and (Z=0,734). So, as the candidate satisfying most of the
professional criteria has the highest score, we would choose the candidate ‘Z’ as library manager.

Table 5 The scores of each library manager candidate (X,Y,Z)

Candidate X5: Candidate Y:

bj uj sj sj
2 wj dj bj uj sj sj

2 wj dj 

A3 1 0,6 0,08 0,01 0,01 0,010 A5 0,9 0,8 0,11 0,01 0,01 0,009

A2 0,9 0,9 0,21 0,04 0,03 0,027 A10 0,9 0,7 0,21 0,04 0,03 0,027

A7 0,9 0,4 0,27 0,07 0,03 0,027 A4 0,8 0,6 0,30 0,09 0,05 0,040

A1 0,8 1,0 0,41 0,17 0,10 0,080 A6 0,8 0,7 0,40 0,16 0,07 0,056

A8 0,7 0,8 0,52 0,27 0,10 0,070 A8 0,8 0,8 0,50 0,25 0,09 0,072

A9 0,7 0,7 0,62 0,38 0,11 0,077 A1 0,7 1,0 0,64 0,41 0,16 0,112

A10 0,7 0,7 0,71 0,50 0,12 0,084 A9 0,7 0,7 0,74 0,55 0,14 0,098

A5 0,5 0,8 0,83 0,69 0,19 0,095 A2 0,6 0,9 0,87 0,76 0,21 0,126

A6 0,5 0,7 0,92 0,85 0,16 0,080 A7 0,5 0,4 0,92 0,85 0,09 0,045

A4 0,4 0,6 1,00 1,00 0,15 0,060 A3 0,4 0,6 1,00 1,00 0,15 0,060

D(x)= 0,610 D(y)= 0,645
5 For candidate X
The calculation of A3
bj=1(See Table 4); uj=0,6 (See Table 3); sj=0,14.0,6=0,084≈0,08; sj

2=0,0064≈0,01;
wj=0,01-0=0,01; dj=1.0,01=0,010
The calculation of A2
bj=0,9 (See Table 4); uj=0,9 (See Table 3); sj=0,14.1,5=0,21; sj

2=0,0441≈0,04;
wj=0,04-0,01=0,03; dj=0,9.0,03=0,027

Candidate Z:

bj uj sj sj
2 wj dj

A1 1,0 1,0 0,14 0,02 0,02 0,020

A2 0,9 0,9 0,27 0,07 0,05 0,045

A3 0,8 0,6 0,35 0,12 0,05 0,040

A5 0,8 0,8 0,46 0,21 0,09 0,072

A6 0,8 0,7 0,56 0,31 0,10 0,080

A8 0,8 0,8 0,67 0,45 0,14 0,112

A4 0,7 0,6 0,76 0,58 0,13 0,091

A9 0,7 0,7 0,85 0,72 0,14 0,098

A10 0,7 0,7 0,95 0,90 0,18 0,126

A7 0,5 0,4 1,00 1,00 0,10 0,050

D(z)= 0,734
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